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Classical Limit of Expectation Values in a Wave
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Expectation values of physical quantities in a wave packet involving few stationary
states in an infinite square well are calculated. Explicit results show that the expectation
values in the classical limit go over to the corresponding classical quantity in the form
of the arithmetic mean (in mathematical term, the Fej´er’s average) of the partial Fourier
series converging to the classical quantity. The number of the stationary states is that
of the partial Fourer series in the Fej´er’s average. The quantum uncertainty is then
demonstrated to have a classical counterpart.
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1. INTRODUCTION

What is the classical limit of expectation values of a quantity on a wave packet?
The following two opposite extremes are fully understood. The first is that the so-
called quasiclassical wave packet in the classical limit involves a large number
of terms such that the expectation value of any quantity on it gives sufficiently
accurate classical quantity (Gea-Banacloche, 1999; Landau and Lifshitz, 1987).
The second is that the wave packet involves only one stationary state on which the
expectation value of any quantity is in the classical limit nothing but the constant
term of the Fourier series form of the classical quantity (Heisenberg, 1994; Liu and
Hu, 2001). Then, what about a wave packet involving only a couple of stationary
states?

For our purpose, the following “rectangular wave packet” (RWP)|ψ(t)〉 is
studied,

|ψ(t)〉 = 1√
2N + 1

N∑
m=−N

|n+m〉 exp(−i En+mt/h), (N ¿ n), (1)
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in which there are 2N + 1 successive stationary states centered at thenth, populated
in the RWP with equal weight

√
2N + 1. The expectation value of any quantity in

the RWP is in the classical limit found to converge asN →∞ the classical quantity
(Liu, 1999; Liuet al., 2002). In this paper, the expectation value of quantities on the
RWP with the finiteNs for a single particle in an infinite square well is explicitly
calculated. The classical limit of the quantum uncertainty is given and its classical
meaning is clearly illustrated. This paper consists of five sections. In Section 2,
the classical motion of a particle in an infinite square well is given. The arithmetic
mean (or Fej´er’s average) of 2N + 1 partial sums of the Fourier series is explicitly
shown. In Section 3, the quantum motion of the particle in the RWP involving
only 2N + 1 stationary states is studied. In Section 4, the meaning of the classical
limit of the uncertainties1x and1p are investigated. In final Section 5, a short
conclusion will be given.

2. CLASSICAL SOLUTION FOR A PARTICLE
IN THE INFINITE SQUARE WELL

For a particle of massµ moving in an infinite square well alongx-axis, the
Newtonian equation gives its solution as

x =
{

pct/µ = aωt/π, 0 < t < T /2

2a− aωt/π, T/2 < t < T ′
(2)

wherepc is the magnitude of the particle’s momentum,a is the width of the poten-
tial, T = 2aµ/pc is the duration of one period, andω = 2π/T is the frequency.

A Fourier analysis of this periodic motion is given by

x = a

2
− 4a

π2

∞∑
r=0

cos[(2r + 1)ωt ]

(2r + 1)2
, (3)

which can be rewritten as

x =
∞∑

l=0

cl cos(lωt), (4)

where

cl =
 a/2, l = 0

0, l = even positive number
−4(4a/π2)1/ l 2, l = odd positive number

(5)

The (n+ 1)th partial sumSn of the Fourier series is then,

Sn =
n∑

l=0

cl cos(lωt). (6)
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It is evident that the (2n+ 1)th partial sumS2n and the (2n)th are identical, i.e.,

S2n = S2n−1, for n > 0. (7)

The arithmetic mean of the first 2N + 1 partial sumsSn(n = 0, 1, 2,. . .2N)
is the so-called Fej´er’s average which is given by

σ2N+1(x) = 1

2N + 1

2N∑
n=0

Sn(x)

= a

2
− 8a

π2

1

2N + 1

N−1∑
l=0

l∑
r=0

cos[(2r+)ωt ]

(2r + 1)2
. (8)

According to the Fourier series theory, the sequenceσ2N+1(x), N = 1, 2, 3. . .,
uniformly converges tox (see Appendix A). In fact, the Fej´er’s average is a crucial
intellectual invention in the development of the Fourier series theory for its uniform
convergence, and a short introduction to it is available in Appendix A.

3. QUANTUM SOLUTION OF A PARTICLE
IN THE INFINITE SQUARE WELL

The Schr¨odinger equation for the problem allows a discrete set of normalized
eigenfunctions belonging to energiesEn,ψn(x, t) =

√
2
a sin(knx) exp

(−i Ent
h

)
θ (x)θ (a− x),

kn = nπ
a , En = h2k2

n
2µ , n = 1, 2, 3. . .

(9)

whereθ (x) is the step function andθ (x)θ (a− x) = 1 only in the closed interval
[0, a] andθ (x)θ (a− x) = 0 otherwise. The matrix element of the position operator
x betweenmth andnth states is computed as

〈x〉mn =


a
2 m− n = 0
0 m− n = nonzero even integer

2a
π2

(
1

(m+n)2 − 1
(m−n)2

)
exp

( i (Em−En)t
h

)
m− n = odd integer

(10)
In our problem, the RWP takes the following form:

|ψ(t)〉 = 1√
2N + 1

N∑
m=−N

|n+m〉 exp(−i En+mt/h), (11)

wheren and N are two positive integers andn− N > 0. From it we know that
there are (2N + 1) energy eigenstates superposed in RWP. The quantum number of
these states ranges from (n− N) to (n+ N) with n being the middle, the average
quantum number.
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Then the expectation value of positionx is

〈x〉 = 〈ψ(t)|x|ψ(t)〉 = 1

2N + 1

N∑
m′=−N

N∑
m=−N

〈x〉n+m′,n+n

= a

2
+ 2a

π2

1

2N + 1

N∑
m′=−N

N∑
m=−N

[
1

(2n+m′ +m)2
− 1

(m′ −m)2

]

× exp

[
i (m′ −m)(2n+m′ +m)ωnt

2n

]
, (12)

where we used result (10), and introduced two symbolsωn and pn which are
defined by:

ωn ≡ πPn

µa
= nhπ2

µa2
, pn ≡

√
2µEn = nhπ

a
. (13)

Since only the terms satisfyingm′ −m= odd integer contribute into the double
sum (12), we have from (12):

〈x〉 = a

2
+ 4a

π2

1

2N + 1
Re(I1+ I2) (14)

where (a derivation is available in Appendix B),

I1 =
N−1∑
l=0

l∑
r=0

[
1

(2n+ 2N − 4l + 2r − 1)2
− 1

(2r + 1)2

]

× exp

[
i (2r + 1)

(
1+ 2N − 4l + 2r − 1

2n

)
ωnt

]
, (15)

I2 =
N−1∑
l=0

l∑
r=0

[
1

(2n+ 2N − 4l + 2r − 3)2
− 1

(2r + 1)2

]

× exp

[
i (2r + 1)

(
1+ 2N − 4l + 2r − 3

2n

)
ωnt

]
. (16)

At first glance, the quantity〈x〉 (14) is nothing special. However, in the classical
limit,

n→∞, N →∞, N/n→ 0, nh→ ωµa/π (i.e.,ωn→ ω). (17)

Equations (15) and (16) reduce to be,

I1 = I2 = −
N−1∑
l=0

l∑
r=0

cos[(2r + 1)ωt ]

(2r + 1)2
. (18)
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Then Eq. (14) becomes

〈x〉 = a

2
− 8a

π2

1

2N + 1

N−1∑
l=0

l∑
r=0

cos[(2r + 1)ωt ]

(2r + 1)2
, (19)

which, whenever finite or infinite terms are used, is exactly the same as Eq. (8). In
other words, in classical limit〈x〉 = x with x given by (2).

4. THE CLASSICAL LIMIT OF THE QUANTUM DISPERSION

The expectation value ofx2 on the RWP is

〈x2〉 = a2

3
− 1

2N + 1

a2

2π2

n∑
m=−N

1

(n+m)2

+ 2a2

π2

1

2N + 1

N∑
m′=−N

N∑
m==−1

(−1)m
′−m

[
1

(2n+m′ +m)2
− 1

(m′ −m)2

]

× exp

[
i (m′ −m)(2n+m′ +m)ωnt

2n

]
, (20)

which is in the same limit (17) the classical quantityx2 in the following Fejér’s
average form,

σ2N+1(x2) = a2

3
+ 4a2

π2

1

2N + 1

2N∑
l=1

l∑
r=1

(−1)r
cos(rωt)

r 2
. (21)

Likewise, we have for momentump

〈p〉 = pn
2

(2N + 1)π
(I ′1+ I ′2) = µ d

dt
〈x〉, (22)

where

I ′1 =
N−1∑
l=0

l∑
r=0

[
1+ (2N − 4l + 2r − 1)/(2n)

2r + 1
− 2r + 1

2n+ 2N − 4l + 2r − 1

]

sin

[
(2r + 1)

(
1+ 2N − 4l + 2r − 1

2n

)
ωnt

]
, (23)

I ′2 =
N−1∑
l=0

l∑
r=0

[
1+ (2N − 4l + 2r − 3)/(2n)

2r + 1
− 2r + 1

2n+ 2N − 4l + 2r − 3

]

sin

[
(2r + 1)

(
1+ 2N − 4l + 2r − 3

2n

)
ωnt

]
, (24)
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which in the classical limit is the classical quantitypc = µ dx/dt with x given by
(2). Moreover we have for the square of momentump2 = 2µH,

〈p2〉 = 1

2N + 1

(
πh

a

)2 N∑
m=−N

(n+m)2 =
(

nπh

a

)2(
1+ N + N2

3n2

)
in (17)= p2

c.

(25)

In fact, we have recently proved in general that the classical limit of expec-
tation values of every quantity on an RWP exactly gives the Fej´er’s average of a
Fourier series expansion of its corresponding classical quantity (Liu, 1999).

It should be noted that whenN is small, the Fej´er’s averageσ2N+1( f 2) for
the square of a quantityf does not equal to the square of Fej´er’s averageσ2N+1( f )
for the same quantityf , i.e.,

σ2N+1( f 2) 6= (σ2N+1( f ))2. (26)

WhenN is large enough, the difference betweenσ2N+1( f 2) and (σ2N+1( f ))2 can
sufficiently small. Then we have a classical dispersion defined by

(1c f )2 ≡ σ2N+1( f 2)− (σ2N+1( f ))2.

It is evident from our investigations above, the classical dispersion (1c f )2 is the
classical limit of the quantum one (1c f )2, i.e.,

(1c f )2 in (17)= (1c f )2.

In other words, the quantum dispersion (1c f )2 does have classical correspondence
(1c f )2. However, the classical dispersion (1c f )2 comes from the incompleteness
of the Fejér’s average representation of the classical quantity as long as theN is
small, and does not mean that there is any intrinsic uncertainty associated with a
single particle. Since the incompleteness can be gradually dismissed by letting the
N approach to the infinity, RWP becomes a typical quasi-classical wave packet
in the limit and the expectation value of any quantity goes over to the accurate
classical quantity.

5. CONCLUSION

For the quantum motion in the infinite square well represented by the RWP
involving 2N + 1 successive stationary states, the quantum dispersion (1 f )2 of
any physical quantityf in the classical limit has a macroscopic value that is
a well-defined mathematical quantity, defined byσ2N+1( f 2)− (σ2N+1( f ))2 with
σ2N+1( f ) being the Fej´er’s average of the first 2N + 1 partial sums of Fourier
series converging to the classical quantityf .
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APPENDIX A: A SHORT INTRODUCTION TO FEJ ÉR’S AVERAGE

Before 1900, Fourier series appeared as a stagnant subject and did not attract
much attention, for the Fourier series did not appear to mathematicians as a reliable
and convenient tool due to the many uncertainties on both the possibility to repre-
sent a function and the convergence of the Fourier series itself. On December 10,
1990, an unknown 20-year-old Hungarian mathematician L. Fej´er proved a famous
theorem (the so-called Fej´er’s theorem): The Fej´er’s average of the partial sum of
the Fourier seriesSn =

∑n
k=−n exp(ikπx

l ) asσn = (S0+ S1+ S2+ · · · Sn−1)/n ap-
proximate the given functionf at each point wheref (x + 0) and f (x − 0) exit
and f (x) = 1

2[ f (x + 0)+ f (x − 0)], and uniformly whenf is continuous on the
circle. As a consequence, the Gibbs phenomenon does not occur with the Fej´er’s
average.

APPENDIX B: A DERIVATION OF EQ. (14) FROM EQ. (12)

The double sum in Eq. (12) can be redenoted by

N∑ N∑
m′=−N m=−N
m′−m=odd integer

F(m′, m) (27)

in which the functionF(m′, m) has the following symmetry,

F(m′, m) = F∗(m, m′). (28)

where symbol * denote the complex conjugate. The double sum (27) can then be
simplified as

N∑ N∑
m′=−N m=−N

m′−m=odd integer

F(m′, m) =
N∑ N∑

m′=−N m=−N
m′−m>0

F(m′, m)+
N∑ N∑

m′=−N m=−N
m′−m<0

F(m′, m)

=
N∑ N∑

m′=−N m=−N
m′−m>0

(F(m′, m)+ F(m, m′))

=
N∑ N∑

m′=−N m=−N
m′−m>0

(F(m′, m)+ F∗(m′, m))

= 2Re
N∑ N∑

m′=−N m=−N
m′−m>0

F(m′, m). (29)
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Therefore in the double sum (27), only the terms satisfyingm′ −m > 0 need to
be considered. We divide the double sum (27) into the following two parts,

N∑ N∑
m′=−N m=−N

m′−m=odd integer

F(m′, m) =
N∑

l=0

N∑
n=0

F(N − 2l , N − 2n)

=
N∑

l=0

N−1∑
n=0

F(N − 2l , N − 2n− 1)

+
N−1∑
l=0

N∑
n=0

F(N − 2l , N − 2n). (30)

The first part
∑N

l=0

∑N−1
n=0 F(N − 2l , N − 2n− 1) satisfyingm′ −m > 0 is

n∑
l=0

F(N − 2l , N − 2n− 1). (31)

The second part
∑N−1

l=0

∑N
n=0 F(N − 2l − 1, N − 2n) satisfyingm′ −m > 0 is

N∑
n=1

N∑
l=0

F(N − 2l − 1, N − 2n)+
N−1∑
l=0

N∑
n=0

F(N − 2l − 1, N − 2n− 2). (32)

Finally letn− l = r in above two sums (31) and (32), the double sum (27) becomes

N∑ N∑
m′=−N m=−N

m′−m=odd integer

F(m′, m) = 2Re
N∑ N∑

m′=−N m=−N
m′−m>0

F(m′, m) = 2Re(I1+ I2), (33)

where

I1 =
N−1∑
l=0

l∑
r=0

F(N − 2l + 2r, N − 2l − 1), (34)

I2 =
N−1∑
l=0

l∑
r=0

F(N − 2l + 2r − 1, N − 2l − 2). (35)

By using the result (33), Eq. (12) gives Eq. (14).
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